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ABSTRACT
Tons of contracts and sessions are dispersed all over
different websites and are very hard to navigate. Many
citizens are left in the dark about how to approach police
reforms. Finding the problematic and confusing sentences
across all the contracts is not easy, we therefore, aim to
provide a user-friendly way that helps to predict the
problematic sentences, based on data mining tools and
model training techniques. We applied supervised learning,
classified sentences, trained different models, evaluated our
results based on the performance of different models, and
returned the most appropriate categories of every sentence.
Additionally, a user-friendly decision support system can
also give users a way to find problematic sentences.
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1 INTRODUCTION
Police Union Contract Misconduct Complaint Detection
System aims to give users a way to search for a sentence
or select the sentence they feel confused about. It analyzes
the police contract from police departments, discovers
problematic sentences and displays the category of the
sentence, helping to know which part of the contract is
misused by the police to take away citizens’ rights. Hence, it
decrypts the encrypted information behind the text.

We chose this project because it is socially-meaningful,
solves the real-world problem; it is interesting to be aware of
how inappropriate some contracts are. The idea of
discovering encrypted and manipulated information is
powerful. It is convenient, giving users a way to just select
or search, thereby preventing the citizens’ rights and giving
them strength to fight against the unjust police.

2 RELATED WORKS
DeRay et al. [1] provide the police union contracts in
Campaign Zero, and analyze the police bill of contracts.
Their findings have demonstrated that police officers have
access to an alternate justice system that allows them to act
with impunity, one that is at odds with justice and simply
unacceptable.[1] This review gives us an insight into what is
misconduct behavior in the contracts, for detail, which
category should the clauses of contracts be in, as well as
the impact and whether they need negotiating in the
contracts. Our experts have worked on the ground truth of
the training model to detect the appropriate category and
labels.

In addition, Campaign zero research[2] talks about the
significance and necessity of text mining on the police union
contracts. Since the police disorder and police misconduct
behavior is getting prevalent and people want legal rights to
limit the misuse of the police force, therefore, some already
existing methods to reduce police force did not seem useful,
and some police union contracts allowed the misuse of the
police force, which is the origin of the misconduct behavior,
Our project, police union contract misconduct behavior
detection is useful and significant to the society. Also, the
Campaign Zero project gives us solutions in the
comprehensive package[3] by ending the minor “Broken
Windows” offenses, and by profiling to prevent the potential
police misconduct behavior.



Another paper written by Mohamed et al[4]. discussed that
contract interpretation and analysis is significant to reduce
time and save energy assisting users to figure out what they
need help with.

3 DATASET
Our dataset includes Police contract data files from the
POLICE CONTRACTS DATABASE, which is originally from
the police union contracts in different states and different
websites. There are about 88 contract files from 100
different cities in the United States..
We also use Human annotated data, provided by Dr. Lin, as
the ground truth to train the data.

4 METHODOLOGY
Our project’s goal is to build a system that can predict
whether a police contract sentence is problematic or not,
and if it is, the system can predict which kind of problem it
has. We transfer this goal into a classification task. By
training classification models, we can use the trained
models to predict the classes of the input sentences. In our
system, each class corresponds to a label of the sentences.
There are seven different kinds of labels, six of them are
different problems categories that appear in clauses of
police contract, the last one is “non-problematic” for the
sentences that do not have a problem.

In this project, we will use several supervised classification
methods like SLDA, SVM, Boosting, Bagging, Random
Forest, Neural Network, and Decision Tree. We choose to
use the human-annotated data as the ground truth labels of
the sentences. The whole process is divided into three
steps: data preprocessing, building the models, and
evaluating the models.

4.1 DATA PREPROCESSING
The raw data includes two parts, the first is police contracts.
There are 88 police contracts of the top 100 largest cities in
the U.S. from the “Police Union Contract Project”. Another
one is the human-annotated data. This file includes 601
problematic sentences which are labeled by experts.

The police contracts are PDF files. The first step we need to
do is to transform the contracts to the form that the R
language can process these text files. Firstly, we use adobe
acrobat to convert all files to a doc file. Then, we use the
online converter tool to convert it to a text file. Here we get
the .txt files that R can easily read and store them. We are
aware that we can use other methods to get the text files,
so you may try the tools that work for you best. Because our
goal is to label the sentence, not the whole contract, we will

here read the contracts one line at a time to divide the
contracts into sentences.

The next step is to filter out the sentences whose length is
smaller than 500 but bigger than 120, so as to exclude
some “useless” sentences, including titles, indexes,
signatures, and so on. We keep the filtered out sentences
as our `text` vector. The `text` vector of sentences are
highly likely to be the legal provisions we need, and we will
manually check if there are still some sentences that we do
not need. The reason we choose to filter the sentences only
by the length rather than other attributes is that the format of
the police contracts of different cities is different. For
example, in the police contracts of Albuquerque, the legal
provisions start with Arabic numerals indexes, like “1.2.1”,
but in Indiana’s police contract, some sentences start with
an English letter or Roman numerals indexes. These
differences make it hard to match them exactly by using
regular expressions or some other ways. Therefore, we just
filter them by length and do a manual check wherever
required.

Then we will label the sentences as problematic or
non-problematic. This is because we use supervised
learning algorithms, so we need to have the true classes of
training data. We have contract files, which contain all the
police contract sentences of these 88 cities, but no labels
included. We use a human-annotated data file, which only
contains the problematic sentences with their category
labels. Further, we compare the sentences in the
human-annotated data file and the contract files (`text`
vector), assigning the corresponding labels to the
problematic sentences in the contract file.

We use a function “stringsim” of the R library named
“stringdist” to find the corresponding labels for the
problematic sentences in the contract files by comparing the
sentence in the contract file and the sentence in the
human-annotated data one by one. Based on the similarity
score of the two sentences (0.85 or higher), it will assign the
sentence in the contract file it’s corresponding label. We do
not use the exact match because when we do the
transformation of the PDF files, there will inevitably be some
conversion errors, for example, some upper-lower case
confusion or some letters are transformed to numbers that
look like, such as l and 1. Therefore, the exact match will
ignore some sentences that contain some small
transformation errors. These small errors won’t influence
our model because we will do some other steps later, for
example, removing punctuation and changing all the letters
to lowercase. We will take the sentences which have small
transformation errors, which means we will set a threshold
similarity (0.85 or higher), and all sentences that have a



similarity higher than that will be assigned the category
labels.

The next step is removing the punctuations, numbers, and
stopwords, and stemming. These steps are standard steps
for text data preprocessing. Because punctuations,
numbers, and stopwords have a very small influence on the
modeling of police contract sentences, and removing them
can make the model focus more on the important
information, reduce the size of the training and testing data,
and reduce the training time, we will get rid of them. We will
further stem the `text` corpus. Stemming in text
pre-processing, as we know, is the process of reducing a
word to its word stem that affixes to suffixes and prefixes or
to the roots of words known as a lemma. Stemming also
reduces the size of the data, and it can reduce the influence
of the different forms of the same word.

The last step is to turn the sentences into a term-document
matrix. We use the “create_matrix” function in the
“RTextTools”[5] library to do that. This function takes a
character string vector as input and outputs the
term-document matrix that is built from the strings in the
`text` vector.

There is a problem we encountered with the term-document
matrix. When we train the models, even if we remove
stopwords and do the stemming, the matrix is still too big for
R to handle. There are 21905 sentences in the `text` vector,
each one of them is a document in the term-document
matrix, and the matrix we build will have 14395 terms.
Therefore, the term-document matrix is quite huge. To
handle this problem, we will do an extra step, which is
removing sparse terms. The sparsity of a word means the
proportion of this word’s document frequency by the number
of the terms in the term-document matrix. Formula 1 is the
formula of sparsity, where N is the number of the terms in
the matrix, and dfi is the document frequency of the term.
We will set the threshold sparsity to 0.002, which means
removing the terms whose sparsity is smaller than 0.002.
After this step, the term-document matrix now has 1644
terms, which is much less than the number of terms in the
previous term-document matrix.

After going through the steps above, we now have the data
ready for training.

4.2 MODEL TRAINING
In this part, we will train the models. The models we trained
are- SLDA, SVM, Boosting, Bagging, Random Forest,
Neural Network, and Decision Tree. After training the
models, we will combine all these models together to predict
the label of new sentences.

4.2.1 Oversampling

Firstly, we will use the term-document matrix to build a
container object for RTextTool to handle. We will assign the
index of the training and testing data here. However, we
encountered another problem here- Our data was found to
be highly imbalanced. Among 21905 police contract
sentences, 20952 sentences are non-problematic, which
means 95.6% of sentences in the data belong to one class.
If we train the models using this data, the model will always
predict the new sentences as non-problematic ones. The
following table shows the result of the model with
imbalanced data. To be sure of this problem, we carried out
a little experiment on the test data. In the table,
“NUM_MANUALLY_CODED” is the true number of
category predictions and “NUM_CONSENSUS_CODED”
shows the result of the system.

Table 1: Predictions on imbalanced dataset:
Actual Vs Predicted

We can find that if we use the imbalance data here, the
system will predict all test data to be non-problematic.
Therefore, we need a solution to solve this problem. In this
research study, we use oversampling techniques to make
the training data balanced. Oversampling is a method that
can increase the number of data points in small classes.
Here we use oversampling to multiply the number of
problematic sentences. We will simply copy and paste the
problematic sentences 50 times in the training data, which
means for each problematic sentence, there will be 49 other
sentences in the training data. Here we need to notice that
we have to first divide the data into training data and test
data, then do oversampling. If we do oversampling first,
because for each problematic sentence there are 49 other
sentences in the data set, when we divide the data there will
be the same sentences divided into both training and test
data sets. Therefore, when we test the models, they are
actually predicting the training data, which will make the
performance incorrect.



Also, there is another method called undersampling that can
solve the imbalance problem. On the contrary,
undersampling will delete some data points in the classes
that have too many points. The reason we do not use
undersampling is that it will delete many non-problematic
sentences, which is a deletion of the needed information.
Instead, oversampling can be seen as an emphasis on
problematic sentences in our study. The other reason is that
it will make our data set too small. If we use oversampling,
there will be only about 1100 police contract sentences left.

4.2.2 Coverage

Now we have the correct way to prepare the data ready for
training and testing, the next step is to use “RTextTools”,
which is a library in R language, to train the models.

The training process is simple, we just need to use the
term-document matrix we developed to build a container for
the training process, then input the container into the
training function.

Here is another problem, which is because after
oversampling, we have 59390 police contract sentences in
the training data set, so if we want to use K-fold cross
validation, the device cannot handle the cross validation
process. We tried several times, from 5-fold to 10-fold cross
validation, the program crashed after running for about an
hour when training most of the models. The error shown in
R studio is “Error: cannot allocate a vector of size 720.2
Mb”, so the reason for this crash should be memory
overflow. Even though we can run 5-fold cross validation for
some simple models, for example, the SLDA model, without
crash, it will take about 2-3 hours to finish. We made a
comparison between the SLDA models trained with 5-fold
cross validation and without cross validation, and we find
the improvement is tiny. Therefore, we traded that
insignificant performance improvement by training models
without cross-validation. We will see that our systems
perform well without cross validation. Table 2 shows the
performance of the SLDA models with and without 5-fold
cross validation.

We trained 7 models in this step, and table 3 shows the
performances of these 7 models. We can see if we pick any
of these models, the performance is not good. Except for
the overwhelming class, the highest precision is from the
Random Forest model, whose precision is 0.75. The highest
recall is 0.45 from the Boosting model. The highest F-Score
is 0.47 from the SVM model. We can see even the highest
performance still cannot satisfy our requirements.
Therefore, we need to combine all these models, to improve
the performance of the system.

Therefore, here we introduce Coverage. Coverage is the
proportion of the test data that has at least N models’
agreement. Here the N is set by ourselves and is mostly
equal to the number of models which are appropriate for a
given task. For example, if N equals 5, and we have 10
police contract sentences in the test data, let 2 of 10
sentences have a predicted label which is agreed by at
least 5 models, so our coverage would be 20%. Here is the
formula for coverage[6], in which k is the percent of
sentences whose label is agreed by at least N models, and
n represents the total number of sentences.

We will combine all our models by using the basic concept
of coverage, which is only classifying sentences with labels
that are agreed by at least N models. If there is an input
sentence that cannot be agreed by at least N models, we
will classify it as a sentence which we cannot process. It is
obvious that if we increase the threshold value N, there will
be fewer sentences that meet the requirement, but the
performance will be better. Therefore, there is a tradeoff
between the number of sentences that we can classify and
the performance of our system. We can choose a
reasonable value of N between 0 and 7 to make our
system’s performance relatively good and which can also
predict most of the sentences. We will discuss this choice in
the evaluation section.

Table 2: Performance of SLDA model trained with and
without  K-Fold Cross Validation



Table 3: Performances of the models

5 EVALUATION
In this section, we will evaluate the performance of all the
models, and the aggregate performance after combining all
the models.

5.1 MODEL PERFORMANCES
Firstly we will see the performances of all models. Figure
1-3 shows the performances of all models. We can see that
if we use F-Score as our metric, the Random Forest model
performs the best, followed by SVM and Bagging models.
However, Boosting and Decision Tree models perform
poorly. Also, we can see the recall and precision of the
models. If we use recall as a metric, SLDA, Random Forest,
SVM, and Bagging models perform similarly. Their recall
values are all around 0.32. Then if we look at the precision
of different models, the forest still performs the best, and its
performance is much better than the second best
performance. Boosting, Decision Tree and Neural Network
perform poorly this time.

Figure 1: Recall of the models

Figure 2: Precision of the models

Figure 3: F-Score of the models



5.2 CRITERIONS
Now, we have to consider which criteria we want to use.
Here is an important point which is that our original data set
is imbalanced. As we discussed in 4.2.1, 95.6% of the test
data are non-problematic sentences. Therefore, we will not
use precision as our criterion. This is because if we use
precision as the criterion, it is simple for a model to perform
well, all it needs to do is to predict all sentences as
non-problematic, and the precision of that model will reach
95.6%. Also because precision has a big influence on
F-Score, we will also not use F-Score as the criterion.

We, therefore, introduce the concept of recall and see how it
works for our problem statement. In the classification task
which has more than 2 classes, we will use a different recall
formula. We found this formula in the “RTextTools” library’s
source code. The way that RTextTools calculates the recall
for the classification with more than 2 classes is to calculate
the recall of each class. Figure 4 shows how “RTextTools”
calculate the recall. The recall for class M is the proportion
of the sentences of class M which are correctly predicted
among all the sentences that are in class M. In figure 4, it is
nm,m divided by the sum of the nth row.

We can see that recall is the most proper criterion among
these metrics. Firstly, if a model has a high recall, it means
among all the sentences of class M, the model has to
predict most of these sentences correctly, and for all the
class M, it has to meet this requirement. This is very close
to our goal. When we predict the sentences in a new police
contract, we want most of the sentences of each class to be
correctly labeled. We can accept some “false positives”
because we can ask some law experts for future
determination. However, let us go back to the precision, if
we have a high precision model, its performance could be
very poor. For example, this model can easily achieve high
precision by only predicting the sentences that it is one
hundred percent sure of, and if the sentence’s class is not
sure, it will simply classify it as non-problematic. Because
we have over 95% of the non-problematic sentences, by
doing this, the precision could be very high. For the
problematic classes, its precision would be 100%, and for
the non-problematic class, its precision will be at least 95%.
This is why we use recall as our criterion and do not use
precision and F-Score, which are influenced by precision.

Figure 4: A table shows how to calculate the recall

Further, we discuss Coverage and Recall Accuracy and
tradeoffs between them. An ensemble (consensus)
agreement to enhance accuracy is recommended for our
modeling task. Ensemble agreement refers to the fact that
multiple different algorithms make the same prediction for
the class of an event. Using a four-ensemble agreement
approach, Collingwood and Wilkerson (2012) found that
when four of their algorithms agree on the label of a textual
document, the machine label matches the human label over
90% of the time. The rate is just 45% when only two
algorithms agree on the text label.[6]

RTextTools has create_ensembleSummary() function to
calculate coverage and the recall accuracy.  As we
previously mentioned, Coverage simply refers to the
percentage of documents that meet the recall accuracy
threshold. For instance, say we find that when seven
algorithms agree on the label of a sentence, our overall
accuracy is 98% (when checked against our true values).
Then, let’s say, we find that only 20% of our sentences meet
that criterion. If we have 10 sentences and only two
sentences meet the seven ensemble agreement threshold,
then our coverage is 20%.

Table 4: Ensemble Coverage and Recall



From our evaluation of Coverage and Recall (Table 4), we
see that with n >= 1, coverage is 100% and recall is 95%
and the same is for n >= 2 and n >= 3. From n >= 4 till n >=
7, coverage decreases gradually, and counterintuitive recall
increases.

Generally, the trend followed is as the coverage decreases,
the recall will increase meaning that you can classify fewer
sentences more accurately. For example, just 44% of the
sentences in our data have seven algorithms that agree.
However, recall accuracy is 98% for these sentences when
the 7 algorithms do agree. Figure 5 shows the tradeoff
between coverage and recall. Considering that 95% is often
the most suitable inter-coder reliability standard, and the
coverage decreases much quicker than the recall increases,
we agree upon  4 or 5 ensemble agreement with these data
sentences because we label 99 -100% of the data
sentences with an accuracy of 95%. [6] Therefore, here we
trade off between the accuracy recall and the coverage. We
try to choose those values for coverage and recall where we
cover most of the data sentences and also maintain the
accuracy recall at the same time. We try to get a model
which has high coverage and high recall accuracy, thereby
doing a negotiation between the two.

There is something about recall we would like to reconsider.
Considering the high recall accuracy of 98%, there are
some influences from the imbalance data. Because we
have about 95% of the data in class 5, the recall of class 5
of all models will be high, and we can find this in table 3.
The high recall of class 5 will make the overall recall also a
higher value. However, we have to also notice that even
though the class 5’s recall is high, it cannot make the overall
recall reach 0.98. Therefore, our system’s good
performance is not because the system only performs well
on class 5, or another specific class, it is because our
system has a good performance overall.

Figure 5: Coverage and Recall

6 CONCLUSION
Our Police Union Contract misconduct behavior system
deals with real-world problems, providing users a way to
find help based on the misconduct behavior they think they
have encountered. The Data modeling parts can get a high
recall score, meaning we can get good output and
appropriate category labels from the model. Large amounts
of data can be handled by using different techniques. We
used data preprocessing, oversampling techniques and
supervised classification algorithms to label the sentences
in every pdf contract correctly.

7 FUTURE WORK
The code for our current research is available at the URL
  https://github.com/class-data-mining-master/2021-fall-dm-pr
oject-angrynerds. We have categorized the problematic and
non-problematic sentences into different labels, but we
believe that there is more we can do. We further plan to
build an intelligent user-friendly system that will answer the
citizen’s queries’ based on the contract related problems of
a city.
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